A New Lorenz System Parameter Determination Method and Applications

نویسندگان

  • A. Orue
  • Shujun Li
چکیده

This paper describes how to determine the parameter values of the chaotic Lorenz system from one of its variables waveform. The geometrical properties of the system are used firstly to reduce the parameter search space. Then, a synchronization-based approach, with the help of the same geometrical properties as coincidence criteria, is implemented to determine the parameter values with the wanted accuracy. The method is not affected by a moderate amount of noise in the waveform. As way of example of its effectiveness, the method is applied to figure out directly from the ciphertext the secret keys of two-channel chaotic cryptosystems using the variable z as a synchronization signal, based on the ultimate state projective chaos synchronization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis

This paper describes a method about how to determine parameters of some double-scroll chaotic systems, including the Lorenz system and the Chua’s circuit, from one of its variables. The geometric properties of the system are exploited firstly to reduce the parameter search space. Then, a synchronization-based approach, with the help of the same geometric properties as coincidence criteria, is i...

متن کامل

Characterization of hyperchaotic states in the parameter-space of a modified Lorenz system

In this paper we report a new four-dimensional autonomous system, constructed from a Lorenz system by introducing an adequate feedback controller to the third equation. We use a numerical method that considers the second largest Lyapunov exponent value as a measure of hyperchaotic motion, to construct a two-dimensional parameter-space color plot for this system. Different levels of hyperchaos a...

متن کامل

The Beta-Weibull Logaritmic Distribution: Some Properties and Applications

In this paper, we introduce a new five-parameter distribution with increasing, decreasing, bathtub-shaped failure rate called the Beta-Weibull-Logarithmic (BWL) distribution. Using the Sterling Polynomials, various properties of the new distribution such as its probability density function, its reliability and failure rate functions, quantiles and moments, R$acute{e}$nyi and Shannon entropie...

متن کامل

Controlling the diffusionless Lorenz equations with periodic parametric perturbation

Diffusionless Lorenz equations (DLE) are a simple one-parameter version of the wellknown Lorenz model, which was obtained in the limit of high Rayleigh and Prandtl numbers, physically corresponding to diffusionless convection. A simple control method is presented to control chaos by using periodic parameter perturbation in DLE. By using the generalized Melnikov method, the parameter conditions ...

متن کامل

A New Five-Parameter Distribution: Properties and Applications

In this paper, a new five-parameter lifetime and reliability distribution named “the exponentiated Uniform-Pareto distribution (EU-PD),” has been suggested that it has a bathtub-shaped and inverse bathtub-shape for modeling lifetime data. This distribution has applications in economics, actuarial modelling, reliability modeling, lifetime and biological sciences. Firstly, the mathematical and st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006